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Abstract: A novel one-step construction of bicyclo[5.3.l]undecane skeleton 
via intramolecular cycloaddition of allenyl ethers is described. 

The intramolecular cycloadditions of allenesl constitute the versatile 

methods for the stereocontrolled synthesis of variously functionalized poly- 

cyclic compounds. 
2-4 

In particular, its intramolecular Diels-Alder reactions 

fully enjoy the merits of the unique structure of allenes and proceed with ex- 

traordinary ease. 4,5 As a part of our studies on development of the general 

and efficient synthetic methods due to the allene cycloaddition strategy, 
4 

we 

report herein a new approach to the facile construction of tricyclic Cn.3.11 

carbon ring systems (B) via the novel tandem intramolecular [2+2] cycloaddi- 

tion and [3,3]-sigmatropic rearrangement of the allenyl ethers (A) as shown in 

eq 1. 

While thermal treatment of the propargyl ether la (R = H) with t-BuOK led - 
to a smooth formation of Diels-Alder adduct 2a via the allenyl ether inter- 

mediate, 
4c 

- 
lb4e - (R = Me) was found to undergo a quite different kind of re- 

arrangement with remarkable ease. Thus, when a solution of lb in t-BuOH was - 
heated at 83 'C in the presence of t-BuOK (8 equiv), lb was rapidly consumed - 
(30 min) and the novel adduct 3b was obtained as a sole product in 88% yield - 

(eq 2). The structure of 3b was confirmatively determined by the spectrosco- 

pic data [MS m/e 176 CM+); -i H NMR (CDC13) 6 5.27 (m, H-8), 4.97 (small m, H- 

31, 4.82 (br s, H-11), 1.48 (s, CH3); 13C NMR 6 153.10 (s, C-l), 138.24 (s, C- 

7), 125.14 (s, C-21, 116.30 (d, C-8), 88.75 (d, C-11), 85.88 (d, C-3)] as well 

as the chemical transformations. Catalytic hydrogenation of 3b (1 atm H2, 5% - 
Pd-C, EtOH) gave the dihydro-derivative 46 [m/e 178 (M+)] and its oxidation 

with m-CPBA (CH2C12, 0 "C) afforded the monoepoxide z6 (overall 57%) [MS m/e 

194 CM+); 'H NMR 6 4.18 (d, Jll 7 = 6.5 Hz, H-11)], whereas treatment of 3b 
I - 
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(2) 

(3) 

with m-CPBA (2 equiv) produced the crystalline diepoxide 26 (91%): mp 95-96 

'C; MS m/e 208 CM+); 'H NMR 6 3.94 (s, H-11). This novel reaction generally 

occurred when the C-2 position in 1 was displaced by the sterically demanding 

substituent (R). For example, the similar base treatment of 7 4e resulted in 

a smooth rearrangement to give z6 in 92% yield (eq 3). 

- 

However, the reaction 

of cyclopentene derivative lc gave a mixture of 3c (30%) and Diels-Alder - 

adduct 2c (60%) (eq 1).4c'6'g 

- 

- 

The formation of these new products (3 and 8) can be most - reasonably 

explained by 

ether z4" 

successive [2+2] cycloaddition of the initially formed allenyl 

to 2 and its [3,3]-sigmatropic rearrangement (Cope rearrangement), 

Scheme I 
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Scheme II’ 

ok 6f.g _Cj$& hJJ.k _ CJ,~,C.~ _ <@ 

1~2~ R=H 
lg&. R=Me 

‘Reaction conditions (yield; a, b) : (a) NaBH4, EtOH, O'C (83%, 84%) ; (b) Li. liq NH3 
(54%, 75%); (c) (cH~oH)~, p-TsOH, CgHg, Dean-Stark, 80°C (99%, 95%); (d) PCC, CHzCl; 
(95%, 91%); (e) LDA, THF, -78"C, then PhSeCl (89%, 93%); (f) 15% H202, Py, CHzClz,D C 
(77%, 83%); (g) GUI, CHzCHMgBr, THF, -78'C (81%, 92%); (h) NaH, THP, D"C, then HCOzEt 
(93%, 78%); (i) [= (t)] (6D%, 75%); (j) [= (e)] (45% at 55% conversion: 38% at 43% 
conversion); (k) [= (f)] (lOO%, 96%); (1) for a, NaBH4, CeC13, MeOH, 0 C (46%); for h 
DIBAL-H, C6H6, 5°C (58%); (m) n-BuLi, DMSO, CgHg, O"C, then CHCCHZBr (51%, 54%); (n) 
t-BuOK (8 equiv), t-BuOH, 83OC (loo%, 96%). 

in which the sterically most compressed C2 -C3 bond is preferentially cleaved 

to give 2 (Scheme I). The remarkable change of reaction mechanism can be 

attributed to the steric effects of the C-2 substituent (R). The bulky R 

would sterically disfavor the s-cis conformation of 2 which is necessitated 

for the [4+2] reaction leading to 2, whereas the [2+2] cycloaddition of 2 is 

considered to occur by the sterically less demanding stepwise mechanism via 

the diradical intermediate 11. 
a 

- 

The above new synthesis of bicyclo[n.3.1] ring systems based on the tandem 

intramolecular [2+2] cycloaddition-[3,3]-sigmatropic rearrangements of allenyl 

ethers may be characterized by special advantages including procedual simpli- 

city, mildness of the reaction conditions, high efficiency, and the predict- 

able stereochemistry of the product. Finally, the synthetic utility of this 

new method was demonstrated by a facile construction of tricyclic[9.3.1.D4"]- 

pentadecane skeleton, characteristic of the taxane diterepenes. 
10 

Thus, treat- 

ment of the bicyclic propargyl ethers 13a,b, prepared from the Wieland-Miesher -- 

ketones (12a,b) as shown in Scheme II, with t-BuOK (8 equiv) in t-BuOH at 83 -- 

OC for 1 h afforded 14a,b 
10 In almost quantitative yields. 

11 
Further studies -- 

on synthesis of taxane derivatives using this strategy are now in progress. 
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